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Heat-transfer coefficients,  pressure coeff ic ients ,  and recovery factors  

on a l l  surfaces of transverse rectangular notches, with length-to-height 

ra t los  of - t o  1-, i n  a plane surface are reported f o r  a i r  speeds from 

160 t o  590 f t / s ec ,  

1 3 
4 4 

Thin, unheated boundary layers  beneath a uniform 

stream ahead of t he  notch a r e  associated with turbulent cavi ty  flow. 

Y~ximum values of t he  three  coefficients a r e  located near the back 

edge o f  t he  notch, Heat-transfer coefficients a r e  proportional t o  t h e  

free-stream mass ve loc i ty  ra i sed  t o  the 0-8  power, continuing i n  a 3ew l-ange 

of notch geometry the  previous controversy with t h e  measurements of Larson 

and ideas of Charwat, A proportionality, based on f e w  data, i s  ten ta t ive ly  

established between heat-transfer coefficient and notch length raised t o  

t h e  -0-2 power f o r  a given notch geometry; it provides a b a s i s  f o r  a non- 

dinensional correlat ion-  Pressure coefficients a r e  unaffected by speed, 

except f o r  local ized compressibilit*y effects ,  Recovery f ac to r s  a r e  inde- 

pendent of speed i n  t h e  square notch bu t  not i n  longer notches, Measured 

velocit . ies and temperatures point out t h e  inadequate treatment by exis t ing 

theor ies  of t he  major. res is tance t o  heat t ransfer  a t  t h e  surface. 
I 

I 



* 4 

- 2  - 

NOMENCLATURE 

static-pressure coefficient,  ( p  - pr)/(Qru?/2); 

spec i f i c  heat of air  a t  constant pressure; 

notch height; 

l o c a l  heat-transfer coefficient,  qw/tw; 

thermal conductivity of air; 

notch length; 

Mach number; 

s t a t i c  pressure; 

heat l ibera ted  a t  surface per uni t  t i m e  and area; 

recovery factor ,  1 - (ts - ta)/(u:/2c); 

temperature group (tks/qw) (PrU,/ps 1 0.8, ft0*2; 

temperature rise due t o  heating, Fahrenheit degrees; 

unheated surface temperature, deg F; 

stagnation chamber temperature, deg F; 

ve l o  c i t y  , f t  / se c ; 

- 

ft-0.2. heat-transfer group, (h/ks) (ps/prUr)o*8y Y 

0.8 
dimensionless heat-transfer group, (hL/ks) (ps/prUrL) 

distance from f ron t  s ide  of notch, in.; 

distance along periphery of notch from back edge, in.; 

distance above bottom of notch, in. 

; 

Greek symbols 

8 ,  boundary-layer thickness; 

p, viscosity;  

p, density. 



Subscripts 

e, 

f ,  

r, 

s, stagnation chamber5 

w, surface,  

edge of f r e e  stream bordering upon f r e e  shear layer;  

heat- t ransfer  quant i ty  on f la t  plate;  

reference loca t ion  0.25 in.  ahead of notch; 

INTRODUCTION 

A transverse rectangular notch tha t  is  introduced in to  a plane surface 

causes l i t t l e  change t o  a uniform f ree  stream t h a t  is flowing past  the  

cutout, i f  the  length of t h e  cavi ty  i n  the  d i rec t ion  of t h e  free-stream 

flow is  not too great  compared t o  the height,  

of  a f r e e  je t  boundary forms over the cavi ty  and borders t he  external  

p o t e n t i a l  flow, 

p a r t  of t h i s  f r e e  shear layer  i s  deflected i n t o  the  notch a t  t h e  back edge, 

giving r i s e  t o  a flow i n  t he  notch. 

such as the  present investigation, t h i s  cavi ty  flow is  highly turbulent ,  

Measurements of heat t r ans fe r  i n  cav i t i e s  

A shear layer  l i k e  tha t  

It widens from t h e  f ront  t o  t h e  back of the  notch, and 

I n  atmospheric wind tunnel  experiments, 

3 
4 

Short notches with length dimensions L up t o  1- times t h e i r  height 

H had not been invest igated f o r  thermal flow ef fec ts  p r i o r  t o  the  present 

invest igat ion,  although surface pressure and ve loc i ty  surveys had been 

reported by Roshko 111 t h a t  seemed t o  indicate  a l a rge  eddy was ro ta t ing  

i n  t h e  square notch, complemented by small vor t ices  i n  t h e  inner corners, 

T yuI nnnhn OWLA [2 ]  measzred the merage heat-transfer coef f ic ien t  t o  longer notches 

with L/H of 4-8  or more, I n  laminar flow, average coef f ic ien ts  were about 
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56 percent of corresponding coefficienits t h a t  were measured on models with 

a s t r a igh t  heated port ion i n  place o f  a cavity. I n  turbulent  cavi ty  flow, 

the average coef f ic ien t  was proportional t o  t h e  ex terna l  mass veloci ty  

peUe (a t  t he  edge of t he  f r e e  stream) ra i sed  t o  t h e  0,6 power, whereas 

s t ra ight-s ided models engendered average coef f ic ien ts  t h a t  were propor- 

t i o n a l t o  

is  associated w i t h  turbulent f l a t  p la te  flow, 

of model dimensions, which were used i n  the  representation of Reynolds 

number, and heat-transfer Coefficient e f fec t ive ly  prevented computation 

of t h e  coeff ic ient  by t h e  reader for  purposes of comparison. 

agreement with other  invest igators  is shown by the loca t ion  of maximum 

l o c a l  coef f ic ien t  of heat t r ans fe r  a t  t he  back end of t h e  cavity. 

peUe raised t o  t h e  0-8  power, which is  the  same exponent t h a t  

An omission,in the  report ,  

Qua l i t a t ive  

Pressures on t h e  back end of long rectangular notches (L/H > 4)  i n  

subsonic turbulent  flow were shown by Charwat [31 t o  increase w i t h  in-  

creasing notch length, whereas the pressures i n  the  f ron t  end were always 

near t h e  free-stream value ahead of t he  notcho Local heat-transfer coef- 

f i c i e n t s  i n  long rectangular notches (L/H 2 )  i n  turbulent flow a t  one 

subsonic stream condition were shown i n  [41 as a f r ac t ion  of a reference 

coef f ic ien t  measured ahead of the  notch, which i s  a d i f f e ren t  bas i s  of 

comparison than t h a t  used by Larson. 

f i c i e n t ,  which was not calculable from the  reported data, prevented the 

determination of t h e  magnitude of the l o c a l  heat-transfer coeff ic ients .  

However, t he  trends of t h e  l o c a l  heat-transfer coef f ic ien ts  were favorably 

compared t o  other  results i n  151 

The omission of the reference coef- 
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Pressure and heat- t ransfer  coeff ic ients  a t  one free-stream condition 

(M = 1,7) with presumably turbulent  flow i n  long notches (L/H 

presented by Morozov 161- 

by Charwat, Heat-transfer coeff ic ients  could be compared favorably t o  the  

Seban-Fox [5] data f o r  similar L/H values by the  scheme presented i n  the  

l a t t e r  report  

4) were 

Both coeff ic ients  had the  same t rend  as obtained 

Pressure, heat t ransfer ,  and recovery f ac to r  were measured by Thomann 

[ 7 ]  i n  long rectangular notches (L/H > 3) i n  a supersonic stxeam, but t he  

admitted inaccuracies i n  measurement cas t  doubt on the value of  the  r e s u l t s ,  

Seban and Fox [SI presented measurements of pressure, recovery fac toro  

and heat- t ransfer  coef f ic ien t  on the bottom of two no+,ches, L/H 2= 1,84 

and 3-47, i n  which the  back s ides  were formed by a t h i n  fence on a wind tunnel  

model that i s  here inaf te r  ca l led  the fence model and is  shown i n  Fig,  1, 

The subsonic free stream was adjacent t o  a turbulent  notch flow, 

heat- t ransfer  Coefficient was proportional t o  the 0-8 power of free-stream 

mass veloci ty ,  a subs tan t ia l ly  different  exponent from the  0,6 value reported 

by Larson, 

the  notch as i n  other  invest igat ions,  

The 

The grea tes t  heat-transfer coeff ic ient  w a s  found a t  the  r ea r  of 

Concepts about heat t r a n s f e r  i n  cav i t i e s  

Sal ient  fea tures  of theories  tha t  p e r t a h  t o  separated flow ash the  

r e l a t i o n  o f  these theories  to r e a l i t y  i n  the  form of experiments are  conside1-ed 

b r i e f l y  as follows, 

Crocco-Lees theory [SI i s  a modification of the i n t eg ra l  bouniiary- 

l aye r  method of ana lys i s  that has recently been successfully applied 
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69, 10, 111 t o  t he  predict ion of pressure i n  separated regions adjacent 

t o  a supersonic f r e e  stream, although t h e  ana ly t i ca l  formulation i s  not 

so r e s t r i c t e d ,  

have been only cursor i ly  compared with experimental results, 

The r e s u l t s  of polynomial p r o f i l e  analyses [ l 2 ,  131 

A l l  of t h e  analyses t h a t  have successfully predicted heat t r ans fe r  

o r  pressure i n  separated flow a re  based on t h e  boundary-layer equations 

of motion, which i s  remarkable in  view of t he  th ick  viscous region and 

especial ly  t h e  sharp corners on t h e  flow boundaries t h a t  engender e f f ec t s  

not explainable by boundary-layer equations 

Inviscid motion has been considered i n  r e l a t ion  t o  cavi t ies ,  but  

these e f f o r t s  [14, 151 are interpreted as academic exercises because of 

the  strong ef fec ts  of v i scos i ty  i n  r e a l  flows, 

Squire [a61 and Batchelor 1171 i n  t h e i r  consideration of s l i g h t l y  

viscous flow i n  cylinders and wakes reasoned independently tha t  a constant 

v o r t i c i t y  exis ted i n  t h e  cent ra l  region of a sepsrated f l o w  t h a t  w a s  

bounded'by shear layers  o r  surfaceso Roshk~ found some evidence o f  t h i s  

fea ture  i n  a square notch i n  highly turbulent flow; it led t o  a descrip- 

t i o n  of the  flow as a ro ta t ing  eddy, 

t h e  present invest igat ion,  

Similar evidmce was found during 

Cha.pman [a81 and Korst 119, 201 i n  lami.nar an3 tu.r"bulent flow, 

respectively,  have visual ized a quiescent cavi ty  of constant temperat.we 

and pressure and a r b i t r a r y  shape bounded by a f r e e  shear Sayer t h a t  

gclvei~ns 1uo,"ri iieaLL ti;aiisfsi. .~G.neiit.a exciiuiige of tlie ca-fl*LLy Tlie 

Chapman r e s u l t  was t h a t  t h e  average heat-transfer coeff ic ient  t o  a cavi ty  



was 56 percent of t h a t  t o  a f l a t  p la te  as long as t h e  cavi ty  with similar 

flow conditions; it w a s  ve r i f i ed  experimentally by Lamon, Korst con- 

cluded t h a t  heat- t ransfer  coeff ic ient  w a s  proportional t o  mass velocity,  

a r e s u l t  t h a t  disagrees with the  turbulent flow experiments of Larson 

and Seban and Fox. It should be noted t h a t  Korst ' s  theory w a s  intended 

primarily t o  pred ic t  t he  base pressure behind a s tep  which it does wi%h 

sucpess i n  supersonic flow as does the corresponding laminar flow theory 

by Chapman [Zl] 

Charwat 641 visual ized t h a t  the  heat exchange from a cavi%y w a s  

goverced by a vortex i n  t h e  back corner, 

f l u i d  in te rmi t ten t ly  from the  f r e e  shear layer  and ejected from downstream 

a f t e r  they par t ic ipa ted  i n  the  vo r t i ca l  motion, 

dependence of heat- t ransfer  coeff ic ient  upon the  0-6 power of mass ve loc i ty  

t h a t  w a s  measured by Larson (but not Eeban and Fox) i n  turbulent flow, 

The corresponding 0,5 power i n  laminar flow w a s  a l s o  predlcted by t h e  theory, 

This vortex received masses of 

The theory predicted the  

None of the  analyses prodwe a proport ional i ty  of heat- t ransfer  

coeff ic ient  t o  mass ve loc i ty  raised t o  the  0,8 power as measured by Setan 

and Fox. Their report  a l so  showed the major temperature drop i n  the  

turbulent  flow t o  be near the  surface, a region tha t  i s  ignored i n  t h e  

analyses,  

assumptions of Korst i s  well-known in  turbulent  flow from the  r e s u l t s  of 

ROshko and Seban and Fox tha t  show ve loc i t ies  near t h e  notch surfsees of 

t h e  order  of 0,4 of t h e  free-s t reamveloci tyD 

The nonquiescent nature o f  t h e  notch flow tha t  belies t h e  
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Objective of  the present study 

The lack of thermal measurements i n  notches shorter  than = II 
prompted the  present study, 

(as contrdsted t o  geometry) on notch performance, t he  upper l i m i t  of 

length w a s  set a t  t he  same geometric r a t i o  

smaller fence model of t he  Seban-Fox experiment 

I n  order t o  t e s t  t h e  e f f e c t  of notch s i z e  

= & as exis ted on t h e  'Ip 4 

MEASUREMENTS OF SURFACE QUANTITIES 

I n  the  present experiment, a two-dimensional model t h a t  is  shown i n  

Fig, 1 spanned t h e  6-in. width of a 6- by 9-in. wind tunnel and divided 

t h e  a i r  flo,w in to  upper and lower streams, each 2- 1 i n ,  t h i ck ,  A virtualLy 
2 

uniform f r e e  stream w a s  a t ta ined  over t h e  s t r a i g h t  sec t ion  t h a t  terminated 

a t  t h e  f ron t  side of t h e  rectangular notch t h a t  i s  t h e  subject of t h i s  

invest.igation, 

i n  length i n  multiples of 0,505 inches by relocating the  back side.  

The notch was 2-05 inches i n  height, and it, could be varied 

Free-stream speeds j u s t  ahead of t h e  notch Ur were from 160 f ps  tqo 

590 Qs, as determined by surface pressure measurements and an assumption 

of isentropic  expansion of t he  flow from stagnation conditions, 

pressure was near atmospheric pressure, while stagnation temperature 

was near 85 deg F, 

Stagnation 

t-, 

Surface heating w a s  effected by e l e c t r i c a l  diss ipat ion from resistanee 

ribbons t h a t  were cemented on the laminated p l a s t i c  s h e l l  and connected i n  

s e r i e s  t . ~  provide a subs tan t ia l ly  constant heating r a t e  on t h e  surfaces of 

L 1 -  bL,,e .- ,LI"clcLlo - L . 1. 

along t h e  periphery except for 0,090-h0-wide gaps a t  t h e  top of t he  front; 

side and a t  t he  bottom of the  back side t o  accommodate a gasket a t  t.he l a t t e r  

Avexzage g&ps of 0,==5 iii, sepai-atzd t'.e g,505 Lr;, ..-,.A- -,.XI.--- W L U G  .I. L U U W I I D  
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locat ion-  

temperatures, 

t h a t  were i n s t a l l e d  on an ailternate configuration of the model t h a t  had 

no heating ribbons, but  did have the same out l ine  as shown i n  Fig, 1, 

?he surface data a r e  presented i n  three combinations, pressure coeff ic ient  

Thermocouples located jus t  under the  ribbons provided surface 

Surface pressure i n  the notch was sensed by pressure taps  

P - P, 
c "'- 1 2 9  heat-transfer group W = 
P - p u  

2 r r  
(e)( &)O O8 , and recovery fact.or 

The stagnation and unheated surface temperatures.are " s  - 'a B - l -  
u2/2c 
r' 

represented by ts and t,, but i n  a l l  other cases t r e f e r s  t o  the  

temperature r i s e  due t o  heating, as, f o r  examrple, i n  the heat-transfer 

Coefficient h = q,/tW. 

- 

Accuracies of C W, and R arej  respectively, 0,014 (L P U2) 
PJ 2 r r P  

0,06Wj and 0,02 (Uz/2c) 
I" 

REXmTS FROM THE SURFAGE DAIA 

Surface data from the seven notches t h a t  comprise t h i s  invest igat ion 

are shown i n  Figs, 2 t o  6 where t h e  perimeter of t he  notch, measured i n  

inches, i s  t h e  abscissa; t he  f ron t  edge is  on the  l e f t  and the  back edge 

on t h e  r i g h t ,  

f ront  ( inner)  cornerf back (inner) corner, and back edge, 

back s ides  t h a t  form the  height of the notch are i n  a l l  cases 2,05 in,, 

whereas t h e  bottom (w3dt.h) i s  nn i n t P g r n l  m i~ l t ip l e  cf 0 _ 5 0 5  i ~ ,  To t h o  

r i g h t  of the  l i n e  marking t h e  back edge of t he  notch, pressure coefficienxs 

are shown t h a t  were measured on t h e  t r a i l i n g  s w f a c e  of t he  model downstreau 

of t h e  notch, 

Lines pa raUgl  t o  t h e  ordinate are drawn a t  the  f ron t  edge, 

The f r c n t  and 



Surface pressure 

Most notches show (Figs 2 t o  6 )  l a rge  pressure coeff ic ients  a t  t he  

This surface bears t h e  impingement of t he  cavi ty  top of the back s ide,  

flow following i ts  acceleration i n  the f r e e  shear layer  by the  t rac t ions  

across the mean dividing streamline. The impinging f l u i d  turns  and flows 

down t h e  back s ide  of t h e  notch toward t h e  bottom where fur ther  pressure 

varia%ions r e s u l t  from t h e  interact ion of t,he cavi ty  flow and t h e  boundaries, 

I n  the following discussion, pressure coeff ic ients  a r e  f irst  examined 

i n  the  square notch, then i n  the shorter notches, and last i n  the  longer 

notches, 

resd  ts 

Similar sequences a r e  foPlow%d i n  the  discussion of thermal 

On t he  square not.ch t h a t  i s  shown i n  Fig. 4, t h e  trend of CP exhibi ts  

a cer ta in  symmetry on the  f ron t  side, bottom and the  lower portion of the 

back side; l o c a l  pressure peaks i n  the inner corners are nearly equal as 

are t h e  l o c a l  minimums a t  the  midpoints of the surfaces of t he  notch, Most 

of t he  magnitudes of Cp 

t h e  back edge. Roshko's r e s u l t s  compare w e l l  with t h e  present pressure 

coeff ic ients  

are much smaller than the  peak value, 0,3, near 

Shorter notches show a decrease i n  t h e  pressure extremes with decreas- 

ing lengths of t he  notches W t i l  no pressure increase due t o  impingement 

can be seen i n  t h e  L,'k .- L/4 notch, 

slight pressure r i s e  can b e  seeng but otherwise the  pressure is nearLy uniform, 

suggesting an a n a l o a  t o  a pressure tap,  

I n  the  bottom of t h i s  notch a 
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Exceptional pressures i n  the  L/H = 1/2 notch were recorded a t  t h e  

highest speedj C i n  the  bottom rose 0 2  above t h e  lower speed values 

as did the  C a t  t he  top of t he  back s ide  i n  the  impingement region, 

During t h e  recording of these pressures it w a s  noted t h a t  t he  manometers 

declioed during t h e  same in t e rva l s  t h a t  a d i s t i n c t  sound emitted from t h e  

tunnel, indicat ing t h a t  a standing sound wave was ra i s ing  the  pressure 

i n  the  bottom of the  notch, 

P 

P 

For the same flow conditions and geometry t h a t  t he  e f f ec t  of sound 

on pressure was observed here, Krishnaumurty [22]  showed by means of 

Schlieren photographs and hot-wire responses t h a t  cha rac t e r i s t i c  frequencies 

of intense sound emanated from the back edge of rectangular notches, Al- 

though surface pressure was not measured i n  the  l a t t e r  investigation, it 

is  indeed l i k e l y  t h a t  the  interact ion of sound and pressure is s imilar  

i n  the  two experiments, 

I n  contrast  t o  the observable sound-pressure in te rac t ion  i n  the 

L/H = 1/2 notch a t  t he  highest  speed, no unusual e f f ec t s  a r e  re f lec ted  i n  

the  thermal r e s u l t s  a t  high speed, 

Surface pressures shown i n  Fig. 4 for t he  4 = 2 
H 4  

notch a r e  lower i n  

t h e  downstream end than those found by Roshko on a similar notch and are 

markedly lower than those on the  square notch. The former d i spa r i ty  may 

be an influence of t he  thinner  boundary l aye r  ahead of t.he notch 

( 6  = 0,039 in ,  compared with Roshko’s 0,871 i n - ) ,  shallower free stream, or 

smaller notches t h a t  were used here, 



- 12 - 

The Cp on t h e  & - 2 
H 2  

notch tha t  i s  shown i n  Fig. 5 i s  much different.  

f r o m  t h a t  measured on t h e  square notch or t h e  4 = 2 notch, I n  t h i s  

notch, t he  la rge  Cp on t h e  back s i d e  (maximum Cp ZZ 1/2) is  greater  than 

that of any of t h e  shor te r  notches. Through t h e  l ikel ihood that an 

H 4  

increased pressure on the  notch surface is  associated with an increased 

pressure i n  t h e  adjacent f r e e  stream, a turning outward of t h e  free shear 

layer  t h a t  bounds t h e  f r e e  stream is  suggested ahead of t h e  back edge of t-he 

not.ch. The/pressure a t  t h e  top  of the f ron t  s ide  of t h i s  notch can l ikewise 
low 

be associated with a turning of t h e  free stream in to  the  notch. A turning 

i n  the  same angular direct ion i s  s ign i f ied  by t h e  low pressure t h a t  is  

located ju s t  downstream of the  notch and shown on Fig. 5 t o  the  r igh t  of 

t he  back edge l i n e ,  It i s  l i k e l y  that a l o c a l  separation bubble has formed 

j u s t  behind the  back edge of t he  notch, The d i s t r ibu t ion  of C on the  

1 ' - 1- notch is  much d i f f e ren t  from t h a t  reported by Roshko on any notch, H 2  
Pressure coef f ic ien ts  on the  L = 2 notch as reported on Fig, E a r e  

H 4  
= 2 notch; similar t rends are discernible,  

H 2  
The maximum pressure coef f ic ien t  i n  t h e  notch, 

P 

smaller than those on the  

but  magnitudes a r e  reduced, 

0-3 ,  i s  comparable t o  the  corresponding coef f ic ien t  i n  t h e  squaye cotch, but 

t h e  remainder of t he  pressures i n  t h e  back end are higher i n  the  

notch, 

L a  - = 1- 
H 4  

t h i s  change with speed can be ascribed t o  t h e  compressibil i ty e f f ec t  i n  



- 13 - 

t h e  f r e e  stream that accompanies the  grea te r  def lect ion of the  stream in to  

and out of t he  notch i n  longer notches. 

a l o c a l  slowing of t h e  f r e e  stream and a corresponding pressure r i s e  tha t  

becomes a compression process i n  high-speed flow. 

coef f ic ien ts  r i s e  i n  high-speed flow when a compression occurs and decrease 

i n  a corresponding expansion. 

coef f ic ien t  j u s t  downstream of the  notch. On the  nose of the  model the  

compressive e f f ec t  w a s  observed i n  the absence of separation a t  a locat ion 

where only the  free-stream dynamics can a f f e c t  t he  surface pressure,  

This def lect ion i s  associated w i t h  

A s  a re su l t ,  pressure 

This l a t t e r  e f f e c t  is evident i n  t h e  pressure 

Pressure coef f ic ien ts  that were measured a t  two locat ions i n  the  

notch that w a s  formed on the fence model of the  Seban-Fox 

L = 12 notch of t he  
H 4  

L/H = L 8 4  

experiment a r e  close t o  the coef f ic ien ts  i n  the 

present invest igat ion when they a r e  placed i n  geometrically similar 

locat ions,  as shown i n  Fig, 6, 

c a l l y  similar notches producing s imilar  pressure performance, but t h e  

evidence is  not conclusive, s ince there were only two pressure t ap  locat ions 

i n  the  former notch experiment. 

The comparison supports t h e  idea of geometri- 

I n  the  notches of th i s  investigation, i s  subs t an t i a l ly  independent 

notch a t  high speed where a resonant 

4 = 1- and 1- where a t rend 

P 

of speed except i n  (1) the  

e f f e c t  is evident and i n  (2)  the  long notches 

of Cp with speed ex i s t s ,  No regular var ia t ion  of 

found, but  Cp 

L/H = 1 /2  

4 3, (H 2 
w i t h  geometry is  

cP 

i n  the  downstream end is  la rge  i n  the  long notches i n  

. - Innr rmr . , - -L  -&LL LL- L--.-d ,.e -..:-A:,” : n - - ~ - + : r r m + 4 ~ n . - .  - ugi L L u c i i I r  w i l r i i  I r i i c  I r A c i i u  u A  chLnIri i i5  r i r v c n u A 6 a I r L w i i n  iz longer G S ~ C ~ C G  0 
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Geometric s imi l a r i t y  i n  the  pressure performance of notches i s  ver i f ied  

i n  near ly  a l l  comparisons with other r e su l t s ,  t he  pr inc ipa l  discrepancies 
.F .. - I occurring as deviations from Roshko's r e s u l t s  i n  the  4. = and 1- 
H 4  2 

notches. 

Recovery f ac to r s  

Recovery fac tors  i n  the  square notch, which a r e  displayed i n  Fig. 4, 

decrease from a maximm i n  the  Fmpingement region and form an undulating 

pa t t e rn  that somewhat resembles the  t rend  of C , The maximum recovery 

fac tor ,  0.8, i s  lower than t h a t  on a f l a t  p l a t e  i n  a uniform stream, 0.89, 

On the  bottom, R k  0.6) is  lower than any that has been measured i n  longer 

rectangular cav i t i e s  by Seban and Fox (minimum R = 0.65) o r  by Morozov 

(minimum R = 0,84), and it is lower than those measured behind a step,  

as reported i n  E231 (minimum R = 0.77), but  it i s  somewhat higher than 

the  recovery f ac to r s  t h a t  are shown i n  [241 i n  a study of a c i r cu la r  

cylinder with a t r a i l i n g  s p u t t e r  p l a t e  (R = 0-43 t o  0.55). 

limits of experimental accuracy, R may be considered independent of stream 

ve loc i ty  U,. 

P 

Within the  

I n  the  shor t  notches, L/H = 1/4 and 1/2, R i s  near 0.7, which is 

higher than  t h a t  observed i n  those wider notches, 2 = 3, 1, and G, t h a t  
H 4  4 

appear i n  Fig, 4. The l o c a l  peak i n  R on the  back s ide  of t he  shor t  

notches near the  bottom is apparently due t o  conduction of heat from the 

warm i n t e r i o r  of t he  model a t  a locat ion t h a t  has a small heat- t ransfer  

c?nefficier;i; ?xt. a gnnd cnn&wt.inn p8t.h through t h e  model s t ructure .  

i n t e r n a l  temperature of the  model i s  probably near t he  recovery temperature 

on a f la t  p la te ,  corresponding t o  R near 0.89, due t o  the  extensive s u -  

face of the  m d e l  that is  exposed t o  t h e  f r e e  stream, 

The 
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Recovery fac tors  t h a t  were measured on the  2 = I.& notch (Fig, 4) 

H 4  
a r e  higher on the  back s ide  and somewhat lower on the  r e s t  of the  rtotch 

than the  corresponding R on the square notch. The s teep drop i n  R 

from the  m a x i m ,  0.9, a t  t he  top of t he  back s ide  of the notch suggests 

t h a t  high-energy f l u i d  impinges a t  the top, but that most of the f l u i d  

i n  the  notch is a t  a low energy level.  

I n  the  L = 2 notch, a high leve l  of R 
H 2  

accompanies the  unusually 

high Cp. The recovery fac tor  is substant ia l ly  higher than on the  4 = 2 
and 1 notches; i n  fact ,  the  minimum R, 0.85, i s  greater  than the  maximum 

R on the  square notch, 0.81. In  the back corner where R exceeds unity, 

t he  values a r e  la rger  than any other i n  t h i s  investigation. 

H 

A speed ef fec t  on 

R, which w a s  absent i n  the square notch, is  evident on most of the periphery 

of the k = 2 notch. 
H 2  

On the 2 = 15 notch R is  smaller than on the  = 2 notch but 
H 4  E 2  

l a rge r  than on the square notch. The trend of R with speed i s  reversed 

L 1  2 = 13 noteh compared w i t h  the t rend i n  the - = L notch; 
H 4  H 2  

i n  the  

L 3  R is  smaller on the  fl = lZ notch a t  increased speed, whereas it is  

l a r g e r  on the. 4 = l& notch a t  increased speed. H 2  
Recovery fac tors  that were measured on the  fence model experiment 

(Fig. 6 )  agree with the  present resu l t s  a t  the highest speed) however, the 

lower speed r e s u l t s  do not agree, "his e f f ec t  may be a r e su l t  of the  d i f fe r ing  

geometries at the  back edge of the  notch i n  the  two experiments, as  shown 

i n  Fig,  1. 
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Morozov / 6 ]  reported R between 0.85 and 0.87 on the  upstream two 

t h i r d s  of the  bottom of an 

Mach number of 1.7. These values are  somewhat higher than those observed 

i n  e i t h e r  t h e  present model or t he  fence model experiments, and, of course, 

t he  stream conditions and geometry are  qu i t e  d i f fe ren t .  

L/H = 4 notch adjacent t o  a stream with a 

There i s  no regular t rend of R with notch geometry; recovery f ac to r s  

a r e  lowest i n  the  nearly square notches, higher i n  the  short  notches, and 

highest  i n  the  long notches, No change i n  R with speed occurs i n  the  

square notch, but a change is noted 

Heat 

A cor re la t ion  of heat- t ransfer  

i n  the  L = I& and 1- 3 notches. 
4 H 2  

t r a n s f e r  

coef f ic ien t  h with mass ve loc i ty  

r a i sed  t o  the  0,8 power i s  achieved a t  nearly a l l  locat ions i n  t h e  P r u r  

severa l  notches, as shown, of course, by subs tan t ia l ly  constant values of 

w = (h/ks)lPs/PrUr) Oo8 a t  severa l  speeds. A major departure ex i s t s  a t  t h e  

top of the  back s ide  where a somewhat smaller exponent is indicated i n  long 

notches by smaller values of W a t  higher meed, I n  t h a t  region the  

exponent of mass ve loc i ty  approaches t h e  0-6  value t h a t  w a s  reported by 

Seban e t  al. [231 i n  t he  separated region behind a step,  and it a l so  

approaches the  same 0.6 exponent tht was found by Larson t o  crorrelate 

average heat- t ransfer  coef f ic ien t  i n  cav i t i e s ,  some of which had rounded 

corners. 

The reason f o r  the d i spa r i ty  on most of the  notch periphery between the  

results of Larson and the  0.8 exponent that was found i n  the present, experi- 

ment and t h e  fence model experiment [ 5 ]  is  not clear.  Differences i.n surface 
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heating conditions and geometry tha t  were u t i l i z e d  by Larson as compared 

with the  present conditions of experiment, namely, constant temperature on 

the  surface and axisymmetric models as contrasted with the  constant heat 

r a t e  and plane model that were used here, do not appear s ign i f icant  enough 

t o  cause the  difference between exponents. 

Heat-transfer group W i n  the  square notch, a s  shown i n  Fig. 4, is  

greatest  a t  the  top of the back side where it i s  0.06, 

rapid decrease i n  W toward the  lower corner can be characterized by a 

power Lcw dependence of heat-transfer coeff ic ient  on the distance from 

the  back edge of the  notch, This aspect is considered i n  a following 

sec t  ion. 

The i n i t i a l l y  

The direct ion of decreasing magnitude of group W indicates the  

general  direct ion of f l o w  along the  square notch perimeter t o  be toward 

the  f ron t  edge of t he  notch f r o m  the back edge, which i s  the  same direct ion 

that was measured by Roshko at  the  midpoints of the surfaces that formed 

a square notch, Flow separation f r o m  the  surface seems t o  occur before 

each of the  inner corners followed by an Fmpingement about 0.4 i n ,  away 

from t h e  corner, as shown by the minor peak i n  heat t r ans fe r  a t  t h a t  

locat ion,  This peak affords an estimate of the  extent of the small 

vor t ices  t h a t  Roshko envisaged as rotating i n  the  inner corners Ln an 

opposite direct ion t o  the main c i rcu la t ive  flow i n  the  body of the  notch, 

A s  a help i n  establishing r e l a t ive  magnitudes, it i s  of i n t e re s t  t o  note 

t h a t  0.026 i s  an average value of W over the bottom and forward surfaces 

of t h e  square notch. The value of 0.026 is, of course, t h a t  which ex i s t s  on 
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an isothermal f la t  p l a t e  i n  a uniform air  stream a t  the  loca t ion  where 

the  turbulent  boundary layer  has a uni t  reference length, as indicated 

by the  well-known cor re la t ion  from [ 2 5 ] ,  

General trends of W a r e  similar i n  t h e  smaller notches, 

L/H = 3/4 and 1/2, t o  t he  t rend  i n  the square notch, but  l i t t l e  evidence 

remains of t h e  corner vor t ices  i n  the L/H = 1/2 notch, Somewhat lower 

values of W i n  t h e  l a t t e r  notch suggests that  t h e  ve loc i t i e s  i n  t h a t  

notch a r e  smaller. 

urements i n  the  notch as i n  t h e  

indicates  t h a t  t h e  d i rec t ion  of flow along the notch surface is the  same 

i n  t h e  three  notches, 

The similar s p a t i a l  behavior of heat- t ransfer  meas- 

L/H = 1/2 L/H = 3/4 and 1 notches 

I n  t h e  L/H = 1/4 notch, W on t h e  notch bottom is of the  order  of 

0.01, which is  about half  of W i n  t he  L/H = 1/2 notch and about 2 / 5  of W 

i n  t he  square notch. The maximum value of W i s  only 0.04 i n  the  

L/H = 1/4 

t h e  square notch, Most remarkable is t h e  near-uniformity of W i n  t he  

bottom of t h i s  notch, an indicat ion t h a t  there  i s  no mean speed along t h e  

surface i n  t h a t  region. 

notch compared with 0.05 i n  t h e  L/H = 1/2 notch and 0,06 i n  

The s p a t i a l  d i s t r ibu t ion  of W i n  t h e  5 = 1, G, 1$, and 13 notches 
H 4 

is  e s s e n t i a l l y  the  same except f o r  a grea te r  W i n  t he  back corner i n  the  

L 1  3 - =  1- and 1- notches. The la rges t  value of W, 0,07, i n  th i s  invest igat ion 
H 2  4 

is found i n  the  = 2 notch a t  the  top  of the  back s ide,  

An in f l ec t ion  i n  the  t rend  of W on the  bottom of the  
H 2  

T -I 7 u - = 1k and 12 
H 2  4 

I notches about 1 .  i n ,  from t h e  f ront  s ide,  ex i s t s  f o r  reasons t h a t  a r e  not 
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clear.  This point plays a major ro l e  i n  the  changes tha t  occur i n  W on 

the bottom when the  s ides  of the notch a r  unheated. 

with and without side heating i n  the  - = 1- notch i s  shown on Fig. 7. I n  

the absence of side heating, a marked increase i n  W ex i s t s  i n  the  region 

i n  back of the  inf lect ion,  but not i n  front.  

A Comparison of W 

L 3  
H 4  

Fig. 7 a l so  contains values of W fran the  Seban-Fox fence model [5], 

with L/H = 1.84. Since the present L/H = 1.72 notch i s  2.05 in. high 

as compared with the former 0.81-in.-high notch, a basis  i s  es ta l l i shed  

f o r  t e s t i n g  the  notion of geometric s imilar i ty  i n  heat t r ans fe r  from notches 

with unheated sides. Since the  fence model r e su l t s  are higher than the  

present r e su l t s  with unheated sides, geometric s imi la r i ty  i n  notches fa i ls  

t o  produce s imilar  values of the dimensional heat-transfer group 

consideration of a l te rna t ive  correlations i s  i n  order. 

W and 

Notch s ize  can be included i n  the heat-transfer correlat ion by forming 

r a t i o s  of 

and hf 

p l a t e  as long as the  notch t h a t  engenders a turbulent boundary layer. 

r i gh t  s ide of t he  equation f o r  Wf follows f romthe  correlat ion of hf i n  

[25]. Seban and Fox sought constant values of h/hf i n  d i f fe ren t  notches, 

bxt ar, equivalent method i s  used here. 

W, the  fence model r e su l t s  a re  first multiplied by a r a t i o  of 

two notches so t h a t  they are  converted t o  the  W t h a t  would be found on 

an imaginary fence model t h a t  i s  the  same s i ze  as the present mocei. Tile 

resu l tan t  lowering, by 1 6  percent, of the fence model r e su l t s  brings them 

i n t o  b e t t e r  agreement with t h e i r  spa t i a l  equivalents, the present r e su l t s  i n  

h/hf = W/Wf, where Wf =I (hf/k) (p/prUr) Om8 = 0.037 L-O' 

i s  the average heat-transfer coeff ic ient  on an isothermal f l a t  

The 

Before comparison t o  the  present 

Wf f o r  the 
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t he  k = 2 notch, as shown i n  Fig.  7 ,  
H 4  

Seban and Fox showed, f o r  heat t r ans fe r  i n  two fence model notches 

and a l so  behind a s tep,  t ha t  a favorable comparison can be obtained between 

r e su l t s  formulated in to  

comparison. 

h/hf, a s  has l ikewise been shown i n  t h e  present 

The improved correlat ion of W a s  a f r ac t ion  of Wf (or equivalently 

h as a f rac t ion  of hf )  i s  a r e su l t  of multiplying W by t h e  length of the  

notch L ra i sed  t o  the  0.2 power, I n  view of t h i s  e f fec t ,  a new cor- 

r e l a t i o n  group is  proposed using L as the  cha rac t e r i s t i c  length, namely, 

This new cor re la t ion  

r e t a ins  the  agreement between resu l t s  from t h e  fence model and the  present 

model that  was discussed previously i n  connection with r a t i o s  of heat-transfer 

i s  dlmensionless, and, a t  t he  same time, it 

groups W/Wf and displayed i n  Fig. 7. I n  addition, there  i s  some evidence 

t h a t  

between r e s u l t s  from two fence model notches and behind a s t ep  on the  basis 

of h/hf appl ies  equally t o  the  same r e s u l t s  when formulated in to  W. 

f is  universal  i n  the  sense tha t  t he  agreement shown by Seban and Fox 

- 

N o  one length, of course, can specify a flow s i tua t ion  i n  which several  

lengths  a r e  needed f o r  a complete description. 

boundary-layer thickness ahead of  the notch and the  height of t he  f r e e  

stream are addi t ional  relevant lengths of unknown signif icance i n  r e l a t ion  

t o  t h e  notch length. However, t he  major heat-transfer e f f e c t s  seem, from 

t h e  l imi ted  data a t  hand, t o  be a function of t h e  length of a rectangular 

In  t h i s  instance, the 
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notch when the  boundary layer  i s  th in  compared with 

the  flow i n  the  notch is  turbulent,  and the  surface ahead of t he  notch i g  

insulated,  as i s  t h e  case i n  a l l  instances of favorable comparison t h a t  

have been discussed. 

H a t  separation, 

An unsuccessful comparison by Seban and Fox with the  r e s u l t s  of 

Charwat entailed,  i n  t he  l a t t e r  experiment, a th ick  boundary layer  ahead 

of the  notch as w e l l  as heat t ransfer  t o  the  surface ahead of the notch. 

Charwat's emphasis of t h e  importance of boundary-layer thickness compared 

t o  H 

performance is concerned, var ies  with flow s i tua t ion .  

is  an indicat ion t h a t  t he  s ign i f icant  length, as far as heat- t ransfer  

Spa t i a l  var ia t ion  of heat-transfer coef f ic ien t  

Spa t i a l  var ia t ions  of W, especial ly  on t h e  back s ide  of t h e  notches, 

show a ce r t a in  degree of similari ty.  If W i s  p lo t ted  logarithmically 

as a function of t h e  distance on the  back s ide  f r o m  t h e  top edge 

which i s  t h e  heated length, Fig. 8 is obtained, 

which, of course, a r e  evidenced i n  logarithmic coordinates as s t r a igh t  

l i nes ,  can approximate the  s p a t i a l  var ia t ion between 

Greater heat t r ans fe r  i n  the  back corner of longer notches i s  accompanied 

by f l a t t e r  slopes i n  Fig. 8 and a corresponding decrease i n  the  negative 

exponent of length X1 t ha t  specif ies  t h e  dependence of heat- t ransfer  

coeff ic ient .  

X1, 

Power law re la t ions ,  

X1 = 0-5  and 1.5 in .  

The magnitudes of W i n  t he  = 1; notch, which a re  about 5 percent 

notch on the back s ide,  separate these r e su i t s  g rea t e r  than i n  t h e  4 = 
H 4  

from a general  t rend  of increasing values of W with increasing notch 
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length. Since W i s  a l s o  greater  on t h e  f ron t  s ide  of t he  L = l& notch, 

t h e  heat- t ransfer  performance of t h i s  notch is unusual as are 
H 2  

and R. cP 

"he exceptional behavior of W 

evident i n  Fig. 8 as a small length (0.6 < X1 < 1.1) f o r  the  power l a w  

behavior and a l a rge  negative slope i n  the  d is t r ibu t ion  of W. 

i n  t h e  shortest  notch (L/H = 1/4) is  

Some tendency toward a power law behavior i n  W e x i s t s  on portions 

of the bottom and f r o n t  s ide of t h e  notches, as shown i n  the  r e s u l t s  f r o m  

L 1  3 
H 4 

t he  - = z, 1, and 1- notches i n  Fig. 8. Negative slopes of W are 

grea te r  on the  bottom and f ron t  s ide than on the  back s ide indicat ing a grea te r  

negative exponent of proportionali ty on . 5 
Fig. 8 a l so  shows i n  logarithmic coordinates t h e  unaveraged measurements 

of W on the back s ide  of t h e  square notch t o  i l l u s t r a t e  t h e  changes i n  

slope and exponent t h a t  occur at d i f f e ren t  speeds within the average dis- 

t r ibut ion.  I n  notches with L/H = 1/2 or more, exponents of XI on the  

back s i d e  a t  various speeds/from -0.3 t o  -0.5 w i t h  t h e  smaller negative values 

occurring i n  t h e  longer notches. 

range 

Exponents f o r  t he  L/H = 1/4 notch are 

near -0.9. Except f o r  t he  l a t t e r  notch, exponents of distance are between 

those t h a t  are known for turbulent flow on an isothermal f l a t  plate ,  -0.2, 

and f o r  a w a l l  jet ,  -0.6, as reported i n  1261. 

FLOW MEASllREWDlTS 

Velocity and temperature traverses i n  t h e  = 1 and 15 notches a t  Fr 4 

low speed (U, z 160 f ps )  were accomplished along l i n e s  t h a t  were normal t o  

L,. - uit: rlutc'n bottom, Veiocity w a s  measured by a hot-wire anemometer t h a t  

sensed t h e  magnitude of t he  veloci ty  including components both normal and 
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p a r a l l e l  t o  the  notch bottom. 

the  l o c a l  free-stream veloci ty  Ue. Detailed measurements are not shown 

The veloci ty  is  displayed as a f r ac t ion  of 

here, i n  the  in t e re s t  of brevity,  but constant speed l i n e s  o r  contours 

drawn through the  t raverse  r e s u l t s  are  displayed i n  Figs. 9 and 11 t o  give 

an improved physical concept of cavity flow. Temperatures i n  t h e  flow 

were sensed by a Nichrome-constantan thermocouple t h a t  was strung between 

sewing needles. 

Velocity of square notch flow 

Roshko's in te rpre ta t ion  of square notch flow as being dominated by a 

la rge  ro ta t ing  eddy was based on velocity t raverses  of small extent from 

the  surfaces t h a t  were located a t  the midpoints of the  three s ides  of a 

square notch. 

indicates  a similar maximum velocity near the bottom, 

similar t rend t o  t h a t  observed by Roshko, 

low value, U/Ue = 0.04, a t  the midheight of t he  notch, followed by a l i nea r  

The present t raverse  i n  the  center of t he  square notch 

ffe 
= 0.34, and a 

The l i n e a r  t rend extends t o  a very 

ve loc i ty  increase t o  t h e  lower edge of t he  f r ee  shear layer  as shown i n  the 

constant speed contours of Fig. 9. The small s i ze  of the region i n  Fig. 9 

that  is  bounded by the  c i rcu lar  low-speed contours around the  center of the  

notch as wel l  as the  near zero speed measured a t  the  center suggest t h a t  the 

f l u i d  near the  center does indeed rotate. Separate low-speed regions exist  

a t  t h e  top and the  bottom of the front  side, and an i so la ted  high-speed 

region i s  found a t  the  center of the bottom. No indications of a ro ta t ing  

eddy, such as ve loc i t ies  on radi i  from some center being the  same, a re  

found except on the  cent ra l  traverse; ra ther ,  there  are indications t h a t  t he  
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flow along the  notch bottom continues from back t o  f ron t  except qu i te  

c lose t o  the  corners, which precludes, by continuity,  any ro t a t ing  

motion as a s o l i d  body tha t  extends t o  t h e  surface.  

Velocity-ratio contours i n  t h e  f r e e  shear layer  a t  t h e  top  of the 

notch i n  Fig. 9 ind ica te  t h e  l a r g e  veloci ty  gradients i n  t h e  l aye r  by 

the  closeness of the  contours. 

the  

Goertler 1271, Korst [191, and others is detectable a t  the  two forward 

locat ions of t raverse  by passing s t r a igh t  l i n e s  through the  locat ions of 

the  ve loc i ty  r a t i o s  

A s imi l a r i t y  i n  the  ve loc i ty  p ro f i l e s  on 

Y/X b a s i s  t h a t  has been used i n  turbulent  shear layer  analyses by 

U/Ue = 0.3 t o  0.8, These l i n e s  in t e r sec t  a t  a 

point  located 0.08 in. (X/L = 0.04) away from the  f ront  s ide  of t he  notch. 

This poin t  is sometimes ca l led  a v i r t u a l  o r ig in  of t he  f r e e  shear layer ,  

but  i ts  purpose here is t o  es tab l i sh  the  s imi l a r i t y  i n  form of the f i r s t  

two ve loc i ty  p r o f i l e s  and, a t  t he  same time, t o  imply t h a t  a turbulent  

f r e e  shear l aye r  is establ ished qui te  c lose t o  the  front s ide  of t he  notch. 

Extending these s t r a igh t  l i n e s  t o  the back t raverse  locat ions produces a 

g rea t e r  separation between the veloci ty  r a t i o s  than e x i s t s  i n  the  measured 

prof i les ;  hence, t he  s imi l a r i t y  i s  not sustained across the  notch. 

Temperatures i n  square notch flow 

Temperature r i s e  due t o  heating is displayed i n  Fig. 10 as isotherms 

o r  temperature contours t h a t  a r e  ident i f ied  both as 

where 

r e l a t i o n  T, l / W ,  Values of Tw on the  surface are shown i n  Fig, 10. 

t (deg F) and T(f to 'Z)3  

T = (tks/qw)(prUr/ps)o*8 and is conveniently r e l a t ed  t o  W by the  
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Temperatures i n  the  flow are everywhere qui te  l o w  compared with 

surface temperatures, which implies t h a t  the  major res i s tance  t o  heat 

t r a n s f e r  is a t  t h e  surface, as evidenced by the  major temperature drop 

there .  The regular  increase of surface temperature Tw on the  back 

s ide  i n  t h e  d i rec t ion  of flow i s  not pa ra l l e l ed  by the  t rend  of flow 

temperatures near t h e  back side,  which increases mostly across  the  f r e e  

shear layer  and near t he  bottom. The flow temperature along the  bottom 

increases  i n  the  d i rec t ion  of flow t o  a peak i n  the  l o w  speed zone i n  

the  f ron t  corner. 

a separate  low-speed region. 

A similar peak ex i s t s  a t  t he  top of t he  f ron t  s ide  i n  

L 3  
H 4  

Velocity i n  the - = 1- notch 

Velocity r a t i o s  U/Ue are shown as contours i n  Fig. 11 i n  t h e . f r e e  

shear layer ,  The layer  dips f a r the r  i n  t h i s  notch a t  X/L = 0.67 than 

the  f r e e  shear layer  on the  square notch, and it subsequently turns  

outward before the  back s ide of t h e  notch. This motion w a s  r e l a t ed  i n  a 

previous sect ion t o  the  increased 

compared t o  

i n  t h e  r a t iona l i za t ion  of the  increased 

by means of the  compression that occurs i n  the  f r e e  stream a t  a turn. 

on the  back s ide  of t h i s  notch 

This motion w a s  a l so  s ign i f i can t  

cP 

i n  the  square notch. 
cP 

Cp i n  t h i s  region at high speeds 

S imi l a r i t y  on a Y/X bas i s  i s  establ ished i n  the  f i r s t  two ve loc i ty  

p r o f i l e s  by passing s t r a i g h t  l i n e s  through 

by observing the  in te rsec t ion  at 

same loca t ion  on an X/L basis a s  i n  t he  square notch. 

divergence between s t r a i g h t  contours through U/Ue = 0.3 and 0.7 is  

U / k  = 0.3, 0.5, and 0.7 and 

X/L = 0.04 (X = 0.16 in.) ,  about the  

_. 'me angie of 
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subs tan t ia l ly  the  same i n  t h i s  notch a s  i n  the square notch, but t he  

i n i t i a l  s imi l a r i t y  i n  t h i s  notch is retained over t he  length of the  f r ee  

shear layer,  i n  contrast  t o  t he  square notch, a f t e r  v e r t i c a l  s h i f t s  i n  

coordinates a r e  introduced t o  l i n e  up the  traverses toward the  back of the  

notch, 

Below the  free shear layer  veloci ty  gradients a r e  l e s s  wel l  defined 

so t h a t  a b r i e f  description is adequate t o  in te rpre t  t he  temperature f i e l d  

i n  the  next section, Velocities i n  the  notch a r e  near 0.15 tJe except 

adjacent t o  the  bottom where they are  directed forward and a t t a i n  a peak 

value near 0.4 Ue over the back two-thirds of the bottom. They a r e  

smaller however, on the f ront  one-third, especially near the f ront  side.  

Evidence of vort ices  was found o n l y  on the 1/2 i n ,  adjacent t o  t h e  corners. 

Temperatures i n  the 4 = 2 notch 
H 4  

As i n  the square notch, t and T a r e  shown i n  Fig, 11 as isotherma 

i n  the  4 = l?. notch. Temperatures i n  the  cent ra l  region of the notch away 

from the  surface and f r ee  shear layer  a r e  somewhat lower i n  t h i s  notch than 

i n  the  square notch both i n  values of  t (deg F)  and T( f too2) .  A tem- 

perature peak (or  hot spot)  ex i s t s  i n  the  cent ra l  region of the notch, 

spec i f i ca l ly  a t  X/L = 0-35 and Y = 0.8 i n ,  A peak a t  such a location 

gives the  appearance of a source of heat i n  the flow because of the usual 

physical  concept of heat always diffusing i n  the  direct ion of declining 

temperature. Heat t ransfer  i s  a l so  unusual on the bottom beneath the  

H 4  

/ \ 
temperature peak; W(= 6) shows a loca l  peak and val ley there.  This 
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locat ion on the  bottom is a l s o  the  l i m i t  of changed values of W 

result from not heating the  notch sides; W 

back but  changed l i t t l e  toward the front,  as shown i n  Fig. 7, 

along the  bottom begins a rap id  decline toward t h e  f ront  from t h i s  location. 

A l l  these measurements, however, serve j u s t  t o  i den t i fy  the  s i t e  of unusual 

e f fec ts  and do not combine t o  produce a coherent explanation of t he  flow 

and thermal phenomena there .  

t h a t  

is  increased toward the  

Flow speed 

A "valley" of temperature that is revealed by the  isotherms j u s t  above 

the  back two-thirds of the bottom i s  associated with the  high speed flow, 

U s  0.4 Ue, which extends forward t o  t he  neighborhood of t h e  temperature 

peak. 

(T = 5) and t rend t o  those i n  t h e  square notkhj temperature i s  nearly 

uniform over much of t he  height of both notches, 

pera ture  contours c lose t o  the f ront  corner a re  noted i n  the  two notches, 

L but  t h e  temperatures a r e  lower here, as elsewhere, i n  t he  - = l? notch. 
H 4  

Flow temperatures near the  back s ide  a r e  comparable i n  magnitude 

Similar shapea of tem- 

Additional s tud ies  of shear on the bottom, pressure-velocity in te rac t ion  

i n  the  notch, pressure and heat- t ransfer  predictions,  twbulence in tens i ty ,  

flow v isua l iza t ionand convectiveheat t ransport  i n  t he  f r e e  shear layer  a s  

we l l  as measurementcr i n  the  flow of the  

measurements %hat have been discussed but  EO% shown here a re  ava i lab le  i n  [ 2 8 ] .  

L/H = 1/2 notch, and other  

SUMMARY 

Surface pressure coeff ic ient  and recovery f ac to r  R a r e  comparable i n  

I -  177 - iiiree groups of notches : shori; notches 

near ly  uniform pressure and R L  0.7 

- i//4 atnci i / 'z) ,  which hare 

on the  bottom; near ly  square notches 
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, which have a nearly symmetrical pressure pa t te rn  w i t h  

peaks i n  the corners and R g  0.6 on the  bottom; and long notches 

1~ and 1~ , which have high pressure i n  the  back end and R near 0.85 (;= "1 
on t h e  bottom. Pressure coef f ic ien ts  and recovery f ac to r s  a r e  comparable 

t o  ex is t ing  measurements i n  a few cases of similar geometry. A var ia t ion  

i n  recovery f ac to r  w i t h  speed ex i s t s  i n  the  4. = If; and 2 
H 2  4 

notches but 

not i n  t h e  square notch. 

Heat-transfer coef f ic ien t  is proportional t o  free-stream mass 

veloc i ty  ra i sed  t o  t h e  0.8 power a t  nearly a l l  locat ions,  

occurs a t  the  top of the  back s ide  (W = 0.04 t o  0.07) with a l l  surfaces 

of the notch heated, but  moderate values (W near 0.02) are noted elsewhere, 

except on the shor tes t  notch (L/H = 1/4) where unusually low performance 

Peak heat  t r a n s f e r  

(W 2 0.01) i s  obtained i n  t h e  bottom, Heat-transfer r e s u l t s  from t h e  

- -  - 15 notch a r e  comparable t o  t h e  Seban-Fox r e s u l t s  only after values of W 
H 4  

a r e  mult ipl ied by t h e i r  respect ive notch lengths raised t o  the  0.2 power, 

rendering W dimensionless. A lack of heating on the  s ides  of the  

L 3  
- =  1- notch produces greater  values of W only on the  r ea r  two-thirds o f  H 4  

the  notch bottom, 

notch i s  grea te r  i n  longer notches, and t h i s  e f f e c t  is  accompanied by a 

changing power l a w  dependence of heat-transfer coef f ic ien t  on length from 

the  t o p  of t he  back s ide .  

Eeat t r ans fe r  on the  lower p a r t  of the  back s ide  of a 

A s  ant ic ipa ted  by Roshko, a l i nea r  var ia t ion  of speed with distance 

from t h e  center  of t he  square notch i s  found a t  t h e  midlength, but the  
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accompanying in te rpre ta t ion  of the motion as a solid-;body ro t a t ion  is  

found t o  be lacking, Temperatures i n  t h e  square notch flow a r e  low 

compared with the  surface temperature, implying t h a t  t h e  major res i s tance  

t o  heat t r ans fe r  e x i s t s  a t  t h e  notch surface, but  the  accompanying 

temperature gradients a t  a distance from t h e  surface suggest t h a t  heat 

t r ans fe r  occurs everywhere within the notch flow. 

The f r e e  shear l aye r  dips f a r the r  i n to  the  L = 73 notch than the  
H 4  

square notch, as evidenced both by veloci ty  and surface pressure measure- 

ments. k = 
H 

but  ra ther ,  a s t rong flow forward along the  bottom exis ted 

No evidence of ro t a t ing  flow was found i n  t he  2 notch, 

over t he  rear 
4 

two-thirds of the  notch bottom, 

i n  the  flow a t  one-third of t he  notch length and accompanies heat- t ransfer  

perturbations a t  the  same loca t ion  on the  bottom of the  notch. 

An enigmatic temperature peak occurs 
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HEATING RIBBONS7 rBRASS SIDE PLATES 
I / 

PRESENT MODEL 

FENCE MODEL 

Fig. 1 .  - Present model and Seban-Fox fence model. 

; 
k .05 
LL .. 
% .04 
3 

(t 
' .03 < 
v 
n 
a 

.02 
c 

I1 

Y 

3 .01 

rBOTTOM 
I 

FRONT SIDE I ' 19 BACK SIDE I 

REFERENCE VELOCITY ur 01 

\ 

3 
1.8 

Y 

m * 

Cp W R 
162 160 - 

Y 

1 . 6  4 II 

244 257 - LL 

373 369 - A 

0" 
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F i g .  9.  - Veloc i ty  r a t i o  contours w i t h i n  square  notch .  Lines 
of c o n s t a n t  v e l o c i t y  r a t i o  drawn through c i r c l e d  measure- 
ments.  

P i g .  10. - Temperature contours  i n  square  notch. Lines of 
cons t an t  temperature r ise due t o  h e a t i n g  drawn through 
c i r c l e d  measurements. 
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Flg. 11. - Temperature and Y e l o c l t y  COntOurs i n  L/H = 1 3/4 notch. 
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